不知道小伙伴們有沒有聽說過汽車的可變懸掛原理?簡單來說,一些高檔汽車為了應付不同的路況,可以通過調整本身系統參數達到升高或者降低汽車底盤高度的目的,以獲取更好的通過性或者駕駛體驗。
這看似和5G的物理資源與幀結構配置是風馬牛不相及,不過小編還是建議閱讀下文之前先在wifi環境下戳戳看下面的視頻(土豪請隨意),也許對5G的設計初衷能有更深入的理解。
LTE中對于OFDM調制符號的子載波間隔只有兩種規定,一種是基于標準循環前綴(Normal cyclic prefix)模式下的15kHz,另外一種是基于擴展循環前綴(Extended cyclic prefix)模式下的7.5kHz。5G NR中對于OFDM調制符號的不同子載波間隔有了新的命名,稱作為參數集(Numerology),5G NR系統所支持的參數集如表1所示:
表1 5G NR系統所支持的傳輸參數集配置
Cyclic prefix | ||
0 | 15 | Normal |
1 | 30 | Normal |
2 | 60 | Normal, Extended |
3 | 120 | Normal |
4 | 240 | Normal |
其中上行參數以及與載波帶寬對應的循環前綴可由高層參數UL-BWP-mu和UL-BWP-cp分別進行配置,下行參數以及與載波帶寬對應的循環前綴可由高層參數DL-BWP-mu和 DL-BWP-cp分別進行配置。這些小區級的公共參數配置可通過RRC重配信令攜帶下發。
BandwidthPart.Config information element
-- ASN1START
-- TAG-BANDWIDTH-PART-START
BandwidthPart-Config ::= SEQUENCE {
--FFS: Conditions! What to do when certain fields or the entire bandwidth part isomitted? Assume parameters of the carrier instead?
-- Or use the initialBWP derived fromSIB1 or ServingCellConfigCommon? Or make it mandatory to provide at least oneBWP.
--FFS: How can a BandiwdthPart be changed? Only via synchronousReconfiguration oralso without?
--NOTE: The changes in this section are based on RAN1 agreements (not from theofficial L1 parameter list):
--The bandwidth parts for downlink. (see 38.211, 38.213, section 12)
downlinkBandwidthPartsToReleaseList SEQUENCE(SIZE (1..maxNrofBandwidthParts)) OFBandiwdthPartId OPTIONAL,
downlinkBandwidthPartsToAddModList SEQUENCE(SIZE (1..maxNrofBandwidthParts)) OF BandwidthPart OPTIONAL,
--ID of the downlink bandwidth part to be used upon MAC-activation of an SCell. If not provided, the UE uses thedefault BWP
firstActiveDownlinkBwp-Id BandiwdthPartId OPTIONAL, -- CondSCellOnly
--Corresponds to L1 parameter 'default-DL-BWP'.
--ID of the downlink bandwidth part to be used upon expiry of txxx.
--This field is UE specific. When the field is absent the UE the initial BWP asdefault BWP.
--(see 38.211, 38.213, section 12)
--FFS: May the NW change the default BWP with a regular RRC reconfiguration oronly with Reconfiguration with sync?
--FFS: Whether to add a default uplink BWP
defaultDownlinkBwp-Id BandiwdthPartId OPTIONAL,
--The bandwidth parts for uplink. In case of TDD uplink- and downlink BWP withthe same bandwidthPartId are considered
--as a BWP pair and must have the same center frequency.
uplinkBandwidthPartsToReleaseList SEQUENCE(SIZE (1..maxNrofBandwidthParts)) OF BandiwdthPartId OPTIONAL,
uplinkBandwidthPartsToAddModList SEQUENCE(SIZE (1..maxNrofBandwidthParts)) OF BandwidthPart OPTIONAL,
--ID of the uplink bandwidth part to be used upon MAC-activation of an SCell. If not provided, the UE uses the FFS:default BWP
firstActiveUplinkBwp-Id BandiwdthPartId OPTIONAL,-- Cond SCellOnly
--The duration in ms after which the UE falls back to the default Bandwidth Part.(see 38.321, section FFS_Section)
--The UE starts the timer when it switches its active downlink BWP to a downlinkBWP other than the default downlink BWP.
--The UE restarts the timer to the initial value when it successfully decodes aDCI to schedule PDSCH(s) in its active downlink BWP.
--When the timer expires, the UE switches its active downlink BWP to the defaultdownlink (FFS: and uplink?) BWP.
--FFS: For TDD the UE switches also the paired uplink BWP to the one with thedefaultDownlinkBwp-Id.
--FFS: For FDD the UE switches the uplink BWP?????
--When the network releases the timer configuration, the UE stops the timerwithout swithching to the default (FFS: and uplink?) BWP.
bandwidthPartInactivityTimer SetupRelease{ ENUMERATED {
FFS:Value range }} OPTIONAL, -- Need M
}
BandwidthPart ::= SEQUENCE {
--An identifier for this bandwidth part.
--Corresponds to L1 parameter 'UL-BWP-index'. (see 38.211, 38.213, section 12)
bandwidthPartId BandiwdthPartId,
--Frequency domain location of this bandwidth part as a distance in number ofPRBs in relation to the reference PRB (PRB 0)
--of the associated carrier. Corresponds to L1 parameter 'DL-BWP-loc'. (see38.211, section FFS_Section).
-- Incase of TDD, a BWP-pair (UL BWP and DL BWP with the same bandwidthPartId) musthave the same location (see 38.211, section REF)
--FFS_Value: RAN1 seems to discuss the final range.
location INTEGER(0.. maxNrofPhysicalResourceBlocksTimes4) OPTIONAL,
--Bandwidth of this bandwidth part (see 38.211, section REF)
bandwidth INTEGER(1.. maxNrofPhysicalResourceBlocks) OPTIONAL,
--Subcarrier spacing to be used in this BWP. It is applied to at least PDCCH,PDSCH and corresponding DMRS.
--The values provided here are converted into a subcarrier spacing as indicatedin 38.211, Table 4.1-2.
subcarrierSpacing ENUMERATED {n0, n1, n2, n3, n4} OPTIONAL,
--Indicates whether to use the extended cyclic prefix for this bandwidth part. Ifnot set, the UE uses the normal cyclic prefix.
--Normal CP is supported for all numerologies and slot formats. Extended CP issupported only for 60 kHz subcarrier spacing.
--(see 38.211, section 4.2.2)
cyclicPrefix ENUMERATED { extended } OPTIONAL,
-- Frequency location of the uplink"direct current" frequency.
-- Correspondsto L1 parameter 'UL-BWP-DC'. (see 38.211, section FFS_Section)
directCurrentLocation INTEGER (0..3299) OPTIONAL,-- Cond UplinkOnly
}
BandwidthPartId ::= INTEGER(0..maxNrofBandwidthParts-1)
-- TAG-BANDWIDTH-PART-STOP
-- ASN1STOP
圖1 RRC重配消息攜帶的子載波間隔和循環前綴參數配置
UE也可以通過讀取MIB獲取SIB1,Msg2/Msg4的子載波間隔,對于主服務小區(初始接入小區),子載波間隔可選配置分別為載波頻率{15kHz,30kHz,60kHz,120kHz},其中前兩個參數配置{15kHz,30kHz}適用于系統載波頻率小于6GHz,后兩個參數配置{60kHz,120kHz}適用于系統載波頻率大于6GHz。
對于副載波或者第二小區組主載波的同步信號子載波間隔可以通過RRC重配消息攜帶,其中參數配置{15kHz,30kHz}適用于系統載波頻率小于6GHz,而參數配置{120kHz,240kHz}則適用于系統載波頻率大于6GHz。
OFDM調制符號的頻域子載波間隔設置與載波頻率是息息相關的。在固定帶寬下,頻域子載波間隔越小,意味著在子載波間隔內并發傳輸的數據速率越低,對于符號間干擾(Inter-symbol interference,ISI)的抑制效果越好,而當小區載波頻率越高(>6GHz),帶寬越大時,可以采取更大子載波間隔以減少FFT器件處理復雜度。
另外,載波頻率越高,對于一些特定場景,例如室內等靜態/低速移動性場所等,由于多徑反射帶來的ISI情況相對較輕,更大的子載波間隔的參數配置也可以滿足適配這樣場景下的數據傳輸。
為了支持多種部署模式下的不同信道寬度,5G NR必須適應同一部署下不同的參數配置(如圖2所示),在統一的框架下提高多路傳輸效率,同時,5G NR也能跨參數實現載波聚合,比如聚合毫米波和6GHz以下頻段的載波,因而5G NR也具有更強的連接性能。
圖2 5G NR不同子載波間隔參數配置適配傳輸場景
伴隨著頻域子載波間隔的差異化,采樣頻率也隨之進行調整,相應時域采樣的時間單位也進行了重新定義
其中,,,
定義常量,LTE中的時域采樣單位,,其中
,。
5G NR中定義的無線幀時域長度依然為10ms,包含了10個1ms時域長度的子幀。每個10ms無線幀依然可劃分為兩個5ms半幀。
5G NR根據實際的應用需求以及場景提出了靈活多變的“微時隙”的概念,每個子幀中可以包含多個時隙。根據子載波間隔,定義一個子幀中的時隙數為,而一個無線幀的時隙個數為,每個子幀中包含的OFDM符號為,不同循環前綴格式下每個時隙中所包含的OFDM符號個數
分別由表2和表3進行定義:
表2 標準循環前綴格式下系統幀相關參數配置(一個時隙包含OFDM符號數 /一個無線幀包含的時隙個數/一個子幀包含時隙數)
0 | 14 | 10 | 1 |
1 | 14 | 20 | 2 |
2 | 14 | 40 | 4 |
3 | 14 | 80 | 8 |
4 | 14 | 160 | 16 |
5 | 14 | 320 | 32 |
表3 擴展循環前綴格式下系統幀相關參數配置(一個時隙包含OFDM符號數/一個無線幀包含的時隙個數/一個子幀包含時隙數)
2 | 12 | 40 | 4 |
5G NR中沒有專門針對幀結構按照FDD或者TDD進行劃分,而是按照更小的顆粒度OFDM符號級別進行上下行傳輸的劃分,一個時隙內的OFDM符號類型可以被定義為下行符號(D),靈活符號(X)或者上行符號(U)。在下行傳輸時隙內,UE假定所包含符號類型只能是D或者X。而在上行傳輸時隙內,UE假定所包含的符號類型只能是U或者X。
表4 時隙格式類型
<td width="38" valign="top" style="margin: 0px; padding: 0px 7px; word-break: break-all; border-top-style: none; border-left-style: none; border-rig
Format | Symbol number in a slot | |||||||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
0 | D | D | D | D | D | D | D | D | D | D | D | D | D | D |
1 | U | U | U | U | U | U | U | U | U | U | U | U | U | U |
2 | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
3 | D | D | D | D | D | D | D | D | D | D | D | D | D | X |
4 | D | D | D | D | D | D | D | D | D | D |
上一篇文章 :
5G新在哪兒(6)-非獨立組網與獨立組網模式下小區選擇
下一篇文章 :
【歐源通科技】漸漸消失的IP
|